Continuous Q1–q1 Stokes Elements Stabilized with Non-conforming Null Edge Average Velocity Functions

نویسندگان

  • LEOPOLDO P. FRANCA
  • SAULO P. OLIVEIRA
  • M. Sarkis
چکیده

We present a stabilized finite element method for Stokes equations with piecewise continuous bilinear approximations for both velocity and pressure variables. The velocity field is enriched with piecewise polynomial bubble functions with null average at element edges. These functions are statically condensed at the element level and therefore they can be viewed as a continuous Q1–Q1 stabilized finite element method. The enriched velocity-pressure pair satisfies optimal inf–sup conditions and approximation properties. Numerical experiments show that the proposed discretization outperforms the Galerkin least-squares method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stabilization methods of bubble type for the Q1/Q1-element applied to the incompressible Navier-Stokes equations

In this paper, a gênerai technique is developed to enlarge the velocity space V^ of the unstable Qi/Qi-element by adding spaces V£ such that for the extended pair the Babuska-Brezzi condition is satisfied. Examples of stable éléments which can be derived in such a way imply the stability of the well-known Q2/Q1-element and the AQ1/Q1 -element. However, our new éléments are much more cheaper. In...

متن کامل

Stabilized Finite Element Methods with Anisotropic Mesh Refinement for the Oseen Problem

with an artificial reaction term cu where c ∼ 1/∆t. We consider stabilized conforming finite element (FE) schemes with equal-order interpolation of velocity/pressure for problem (3)–(4) with emphasis on anisotropic mesh refinement in boundary layers. The classical streamline upwind and pressure stabilization (SUPG/PSPG) techniques for the incompressible Navier-Stokes problem for equal-order int...

متن کامل

On the Design of Non-conforming High-resolution Finite Element Schemes

The algebraic flux-correction (AFC) approach introduced in [8, 17] for the accurate treatment of convection-dominated flow problems and refined in a series of publications [9,11–15,18,19] is extended to non-conforming finite element discretizations. Originally, this class of multidimensional high-resolution schemes was developed in the framework of conforming (multi-)linear P1/Q1 approximations...

متن کامل

A Mixed Finite Element Method on a Staggered Mesh for Navier-stokes Equations

In this paper, we introduce a mixed finite element method on a staggered mesh for the numerical solution of the steady state Navier-Stokes equations in which the two components of the velocity and the pressure are defined on three different meshes. This method is a conforming quadrilateral Q1 × Q1 − P0 element approximation for the Navier-Stokes equations. First-order error estimates are obtain...

متن کامل

Numerische Simulation Auf Massiv Parallelen Rechnern a Non-conforming Nite Element Method with Anisotropic Mesh Grading for the Stokes Problem in Domains with Edges

The solution of the Stokes problem in three-dimensional domains with edges has anisotropic singular behaviour which is treated numerically by using anisotropic nite element meshes. The velocity is approximated by Crouzeix-Raviart (non-conforming P 1) elements and the pressure by piecewise constants. This method is stable for general meshes (without minimal or maximal angle condition). The inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007